Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.
نویسندگان
چکیده
Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.
منابع مشابه
Millimeter-Scale Assembly of CdSe Nanorods into Smectic Superstructures by Solvent Drying Kinetics
Molecular and materials self-assembly are important fundamental principles and strategies for nanofabrication and nanotechnology in general. Hierarchical organization of molecules, polymers, and particles can be induced by various interactions, such as hydrogen bonding and ionic interactions. Furthermore, capillary, electric, magnetic, and entropic forces can influence the assembly of solid-sta...
متن کاملLigand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons
The emergence of chirality is a central issue in chemistry, materials science, and biology. In nanoparticle assemblies, chirality has been shown to arise through a few different processes, but chiral organizations composed of plate-like nanoparticles, a class of material under scrutiny due to their wide applicative potential, have not yet been reported. We show that ribbons of stacked board-sha...
متن کاملCadmium-based nanocrystals and nanocomposites at the air-water interface
Two cadmium-based nanocrystals were studied, cadmium selenide and cadmium telluride, which have potential applications in optoelectronic devices. CdSe quantum dots and nanorods were synthesized with a functional ligand, allowing for the formation of nanocomposites where a vinyl terminated conjugated polymer is attached through a mild Heck coupling. This provided a direct connection between the ...
متن کاملWhite-light emission from magic-sized cadmium selenide nanocrystals.
Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ult...
متن کاملSelf-assembled colloidal superparticles from nanorods.
Colloidal superparticles are nanoparticle assemblies in the form of colloidal particles. The assembly of nanoscopic objects into mesoscopic or macroscopic complex architectures allows bottom-up fabrication of functional materials. We report that the self-assembly of cadmium selenide-cadmium sulfide (CdSe-CdS) core-shell semiconductor nanorods, mediated by shape and structural anisotropy, produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 27 شماره
صفحات -
تاریخ انتشار 2015